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COMMENT 

Operator content of the four-state Potts quantum chain with 
&boundary conditions 

Uwe Grimm 
Physikalisches Institut, Universitat Bonn, Nussallee 12, D-5300 Bonn 1, Federal Republic 
of Germany 

Received 23 December 1987 

Abstract. The four-state Potts quantum chain with a toroidal boundary condition leaving 
a global Z3 symmetry of the Hamiltonian is investigated. At the critical point, the infinite 
system shows SU(2) Kac-Moody symmetry. The conjectured operator content is confirmed 
by numerical finite-size calculations. 

The four-state Potts quantum chain is defined by the self-dual Hamiltonian 

where U and r are the 4 x 4 matrices 

1 0 0  0 0 0 1  

0 0  0 1 0 0  
0 0  o w ’  0 0 1 0  

i2 %) r=[ 1 0 0 0  1 
with w = exp(2~ i /4 ) .  Here, N denotes the number of sites, h plays the role of the 
inverse of temperature and the normalisation factor fixes the Euclidean timescale. 

By investigation of the original Lagrangian formulation of the four-state Potts 
model (Potts 1952), Nienhuis and h o p s  (1985) found two spinor operators with spin 
f and f which have anomalous scaling dimensions 

As will be seen in what follows, these operators can be obtained from the Hamiltonian 
(1) for certain toroidal boundary conditions defined below. It is the aim ofthis comment 
to give the full operator content for those boundary conditions, thus completing the 
knowledge of the operator content of this model with toroidal boundary conditions. 

With periodic boundary conditions (BC), i.e. rNtl = rl ,  the Hamiltonian (1) shows 
a global S ,  symmetry according to the linear transformations 

3 

(rj)m= Amn(r j ) ‘  
n = l  

(4) 
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where 

A E A  = {XpCqsl', O s p  s 3, Os q s 1 , O s  r c  2) 

and the 3 x 3 matrices C, C and R are given byt 

1 
2 

( 6 )  

0 0 1  

Here, A is a three-dimensional unitary irreducible representation of the symmetric 
group S,. A torroidal BC 'B' is introduced by 

where B is any of the 24 matrices of A ( 5 ) .  The global symmetry of the Hamiltonian 
( 1 )  with BC B is in general smaller than S,, in fact it is given by the subgroup Cent( B )  c A 
(centraliser) formed by all matrices of A that commute with B, i.e. 

Cent( B )  = { A  E A 1 ABA-' = B } .  (8) 

For conjugate elements of A these subgroups are conjugate subgroups of S4 and 
therefore isomorphic. It follows that the global symmetry of (1) depends only on the 
conjugacy class of the element defining the boundary term, the same being obviously 
true for the finite-size spectrum. The five conjugacy classes of S, and the corresponding 
centralisers are given in table 1. 

Table 1. Conjugacy classes and corresponding centralisers for the symmetric group S,. 

Conjugacy class 
Cycle Number of Corresponding 
structure elements centraliser 

For all BC defined by elements of the conjugacy classes ( I ) s 4 ,  and 
(IV)s4, as well as for free BC, the operator content is known from previous studies on 
the Ashkin-Teller (AT) quantum chain (Baake et a1 1987a, b, Yang 1987). The Hamil- 
tonian of this model includes ( 1 )  for a special choice of the coupling constant. In 
general, the global symmetry group of the AT Hamiltonian is the dihedral group D,, 
a subgroup of S, built by the eight matrices ZpCq, 0 s  p s 3, 0 s  q s 1 ( 6 ) .  The five 

t I t  should be noted that the similarity transformation corresponding to R does not conserve the algebra 
of observables but leaves the term (U, + u:+u:) in (1 )  invariant. 
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conjugacy classes of D4 are given in table 2 .  Since the only conjugacy class of S4 
containing no element of D4 is ( V)s4, there is just one additional type of BC for the 
Hamiltonian ( l ) ,  where it is left with a global h3 symmetry. In what follows, we 
consider only the Hamiltonian (1) with BC R (6) and global h3 symmetry Cent(R) = 

(1, a, R21. 

Table 2. Same as table 1, but for the dihedral group D4. 

This remaining Z, symmetry as well as translational invariance is used to pre- 
diagonalise the Hamiltonian. The eigenvalues split into three charge sectors labelled 
by Q = 0 , 1 , 2  corresponding to an eigenvalue exp(2rriQl3) of the matrix R. Let 
E f ( P ,  N) denote the eigenvalue of the N-site Hamiltonian belonging to the sector 
defined by charge Q and translational momentum P, where k counts the levels. Eo( N) 
stands for the ground-state energy, i.e. the lowest eigenvalue of (1) with periodic BC. 
Consider the finite-size scaling limit of the spectrum given by the quantities (Cardy 
1984, 1986a, b, von Gehlen and Rittenberg 1986) 

It is already known (von Gehlen et a1 1988, Baake et a1 1987a, b) that, for theories 
with central charge c = 1 of the Virasoro algebra, the spectra (9) can be described in 
terms of unitary irreducible representations of two commuting U( 1) Kac-Moody 
algebras. As a consequence of conformal invariance, the tensor product ( A ,  h)  of two 
irreps gives the following contribution to the spectra (9): 

(10) Sf( P) = A +  r +  A +  F 

with a degeneracy obtained from the generating function II V(z)II "(.Z), where 
OCI 

rI ,(z)= n ( l -zm)- ' .  
m = l  

The (total) momentum p is given by 

the spin s is defined by 

and the quantity 

x = A + &  (14) 
is the scaling dimension of the operator. 
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In the scaling limit, the symmetry of the system examined goes beyond the U( l )  
Kac-Moody symmetry. It is described by the tensor product of two commuting shifted 
(or 'twisted') SU(2) Kac-Moody algebras (Goddard and Olive 1986, Baake et a1 1988). 
Since in our case c = 1, we have to consider only the two level-one representations 
which are characterised by E = 0 (i) for the isosinglet (isodoublet), respectively. Follow- 
ing the notation of Baake et a1 (1988) we denote a unitary irrep of the p-shifted SU(2) 
Kac-Moody algebra by (p ,  E )  where E = 0, 5. The corresponding character expression 
is? 

L~ r3 
X P , E ( Z , Y )  =Tr(z Y a) 

Table 3. Finite-size scaling limits in the Q = 0 sector for momenta P = 0, 1, 2, 3. The 
numerical data (with estimated errors) are compared with the spectra obtained from the 
conjectured operator content. 

P A + r + A + f  (&,&)(i,i) (&$) ($&E)(%,%)($ ,$)  g o ( P )  (exp) 

0 &=0.0556 

8 = 0.889 
18 - 1.389 
&+2=2.056 

49, - 2.722 
$ + 2  g2.889 
3+2=3 .389  
9 = 3.556 
&+ 4 = 4.056 

$ + 4  -4.222 

1 h+1=1.0556 

$+ 1 = 1.889 
%+1-2.389 
&+3-3.056 
$ + 3  23.222 
$+ 1-3.722 
$+3=3.889 
E+ 3 - 4.389 

b 3 0.122 

2 5  - - _  

$+ 2 - 2.222 

a +  1 - 1.222 - 
1 

- 
2 

0.058 (3) 
0.23 (1) 
0.95 (6) 
1.48 (6) 
2.12 (8) 
2.25 (4) 
3.0 (2) 
3.0 (1) 
3.49 (8) 
3.75 (8) 
3.98 (8)  4.04 (8) 4.06 (8)  
4.18 (10) 
4.35(12) 4.18(10) 

1.07 (2) 
1.24 (2) 
2.00 (8) 
2.49 (8) 
3.04 (3) 3.12 (8)  
3.21 (5)  3.25 (5)  
3.96 (10) 
4.0 (1) 4.1 (2) 
4.2 (2) 4.4 (2)  

2 &+2-2.0556 2 - - - - - 2.0555 (5)  2.07 (2) 

$+2=2.889 - - 2 - - -  3.01 ( I O )  3.05 (15) 

&+3=4.056 4 - - - - - 4.00 (8)  4.02 ( 5 )  4.06 (8)  

$+4=4.222 - 4 - - - -  4.2 (1) 4.2 ( 1 )  4.3 (1)  4.3 (2)  

3 &+3-3.0556 3 - - - - - 3.05 (2) 3.05 (2) 3.07 (2) 
$+3=3.222 - 3 - - - -  3.20 (3) 3.21 ( 5 )  3.24 (3) 
$+3=3.889 - - 3 - - -  3.93 (6) 4.0 (2) 4.05 (15) 
3+3-4 .389  - - - 

2.21 (3)  2.25 (3) $+2=2.222 - 2 - - - -  

$+2-3.389 - - - 2 - -  3.47 (7) 3.49 (10) 

4.16 (15 )  

3 - -  4.34 (8)  4.47 (8)  

t Note the identity ,yp,.(z, y )  = , Y ~ + ~ , ~ ( Z ,  y )  which means that all representations alternatively can be regarded 
as shifts of the vacuum representation (0,O). 
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Therefore, it can be decomposed into unitary U( 1) Kac-Moody irreps ( A )  as follows: 

Now, the conjecture for the operator content, previously proposed by Rittenberg 
(1987), shall be presented. Let ( ( p ,  E ) ,  (p ,  F ) )  denote the tensor product of two irreps 
of commuting shifted SU(2) Kac-Moody algebras. In this case, we need p = and hence 

where 

{k} = @ ($( 1 +9k)’) 

{$}= @ ($(2+9k)’) 

k r Z  
(8) = 8 + 18k)‘) 

k c h  

{ E }  = @ (&5+ 18k)’) 
k s Z  k e h  

= 8 ( ~ ( 7 +  18k)’) {?}= 8 (6(4+9k)’). 
k c Z  k c H  

Table 4. Same as table 3 in the Q = 1 sector. 

0 210.556 
E+ 1 = 1.722 
$+ 1 = 2.389 
2 + 2 = 2.556 
$+ 1 = 3.056 
$i 1 = 3.222 
E i 3  = 3.122 
?+ 2 = 3.889 
$ + 4  = 4.556 

1 %= 1.389 
$+ 1 = 1.556 
$ = 2.222 
g + 2 = 2 . 7 2 2  
$+ 2 = 3.389 
$ + 3  = 3.556 
g + 2  = 4.056 
F i 2 1 . 4 . 2 2 2  
%+ 4 1  4.722 

2 $+1=2.389 
$+2=2.556 
q+ 1 = 3.222 
% + 3  = 3.722 
%+ 3 = 4.389 
$ + 4 =  4.556 

3 2 + 2 = 3 . 3 8 9  
$+ 3 = 3.556 
q+ 2 = 4.222 

0.54 (2)  
1.66 (8) 
2.49 (8)  
2.50 (6) 
2 .9(1)  
3.1 ( 1 )  
3.6 ( 2 )  3.71 (5) 
3.85 (9) 3.96 (5)  
4.3 ( 2 )  4.4 ( 2 )  

1.43 ( 3 )  
1.51 (3) 
2.05 (8) 
2.65 (8) 2.71 ( 5 )  
3.46 ( 8 )  
3.48 (8) 3.50 ( 9 )  
3.82 (8) 3.8 ( 1 )  
4.0 (2) 
4.5 (2) 

2.44 (5)  
2.50 (5) 2.51 (4) 
3.05 (6) 3.47 (12) 
3.71 (5)  3.64 (6) 3.6 ( 2 )  
4.24 (10) 4.4 (1) 4.1 (2) 
4.5 ( 2 )  

3.35 (6)  3.35 (9) 3.40 (6) 
3.43 (6) 3.48 (6) 3.52 (8) 
4 .0(1)  4.1 (1)  4.2(2) 
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0.70 (2 )  
1.49 (5 )  
1.87 (5 )  
2.67 (8 )  
2.96 (8 )  
3.37 (5)  3.47 ( 8 )  
3.51 (9) 3.60 (9 )  
3.82 (10) 
3.9 (2 )  4.0 ( 2 )  
4 5 (3 )  

1.70 (2 )  
1.95 (4 )  
2.49 (5) 2.58 ( 5 )  
2.83 (7)  
3.61 (8)  3.66 (8 )  
3.76 (8)  3.95 (9 )  

4.5 (2 )  4.6 ( 2 )  4.7 (2)  
4 .34(5)  4.3 ( I )  4.3 ( 1 )  

4.9 (2) 

2.70 (2)  2.70 ( 2 )  
2.79 (4)  2.96 (3)  
3.44 (8) 3.50 (8 )  3.58 (8)  
3.79 (8) 3.84 (8 )  4.22 (9)  
4.6 ( I )  4.7 ( 1 )  

3.56 (8)  3.68 (5) 3.5 (3) 
3.88 (7)  3.77 (8)  4.1 (3)  

0 g 2 0 . 7 2 2  
$+ 1 = 1.556 
% = 2.056 
% + 2  = 2.722 
++ 1 = 2.889 
% + 2  = 3.389 
$+3-3.556 
%+ 2 = 4.056 
$!+ 2 = 4.222 
g + 4  = 4.722 

1 %+1=1 .722  
12- - 1.889 a +  2 = 2.556 
%+ 1 =3.056 
g + 3 = 3 . 7 2 2  
7 + 2 =  3.889 
%+ 3 = 4.389 
$ + 4  = 4.556 
%+3=5 .056  

2 %+2=2.722 
y+ 1 = 2.889 
$+ 3 = 3.556 
%+ 2 = 4.056 
%+4=4 .722  

3 %+3=3 .722  
?+ 2 =  3.889 

- 
2 

- 
1 - 

3 

3 - 
2 

- 

1 

The operator content for the three charge sectors is then given by 

The two spinor exponents obtained by Nienhuis and Knops (1985) (3) are contained 
in (19). Summing up the three sectors one obtains 

Note that the operator content in the charge sector Q is just given by those operators 
of (20) with spin Q/3 (up to an integer). 

Finally, this conjecture has to be compared with the numerical data. These were 
obtained from numerical calculation of the energies E:! ( P ,  N )  for up to eight sites, 
applying Lanczos's algorithm (Lanczos 1950). Due to CP invariance, only positive 
momenta had to be considered. The quantities (9) were extrapolated using an algorithm 
due to Bulirsch and Stoer (1964) (see also Henkel and Schutz (1988)). The numerical 
data with estimated errors and the spectra deduced from (19) are compared in tables 
3-5. As also previously observed (von Gehlen er al 1985, von Gehlen and Rittenberg 
1986), the convergence is rather poor. This can be explained by the occurrence of 
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logarithmic corrections to finite-size scaling (Cardy 1986b) expected in the presence 
of a marginal operator. Nevertheless, the observed agreement is good enough to 
confirm the conjecture. 
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